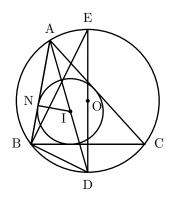
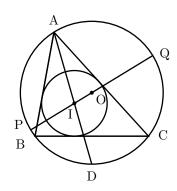
反射テスト 平面図形 証明 内心と外心との距離 01



- (1) BD = ID を証明せよ.
- (2) △ANI ∽ △EBD を証明せよ.
- (3) $2Rr = AI \cdot ID$ を証明せよ.

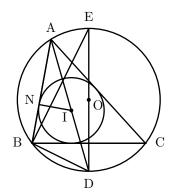
2. \triangle ABC の内接円と外接円を考える. 内心を I , 外心を O , 内接円の半径を r , 外接円の半径を R , 内心 I と外心 O の距離を d とする. 直線 AI と外接円の交点のうち, A ではない方を D とする. また直線 OI と外接円との交点を下図のように P,Q とする. 前ページで証明したことは, 証明なしに使ってよい. (S 級 2 分 30 秒, A 級 5 分, B 級 7 分 30 秒, C 級 10 分)



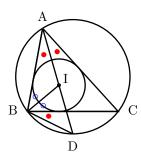
- (1) $2Rr = R^2 d^2$ を証明せよ.
- (2) $R \ge 2r$ を証明せよ.

反射テスト 平面図形 証明 内心と外心との距離 01 解答解説

1. \triangle ABC の内接円と外接円を考える. 内心を I , 外心を O , 内接円の半径を r , 外接円の半径を R とする. 直線 AI と外接円の 交点のうち, A ではない方を D とする. 直線 DO と外接円の交点のうち, D ではない方を E とする. また内心 I から AB に下ろ した垂線の足を N とする. (S 級 6 分, A 級 10 分, B 級 15 分, C 級 20 分)



- (1) BD = ID を証明せよ.
- (2) △ANI ∽ △EBD を証明せよ.
- (3) $2Rr = AI \cdot ID$ を証明せよ.



(1) △DIB において, (左図参照)

 $\angle DIB$ = $\angle IAB$ + $\angle ABI$ \because $\angle DIB$ は $\triangle IAB$ の外角. = $\angle DAC$ + $\angle CBI$ \because 内心 I は三角形の内角の二等分線上. = $\angle DBC$ + $\angle CBI$ \because \overrightarrow{DC} の円周角は等しい. = $\angle DBI$

以上から、 \triangle DIB は二等辺三角形. ゆえに、BD = ID.

(2)

 \triangle ANI & \triangle EBD &EBV † ,

∠IAN = ∠DEB ∵ BDの円周角は等しい.

∠ANI = ∠EBD ∵ N は内接円の接点, DE は直径なので, ともに 90°.

△ANI ∽ △EBD ∵二角相等

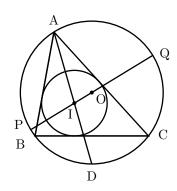
(3)

(2) から、AI : NI = ED : BD \Leftrightarrow $NI \cdot ED = AI \cdot BD$

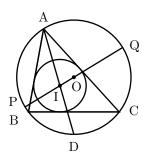
NI = r, ED = 2R であるから, $2Rr = AI \cdot BD$

(1) から, BD = ID であるから, $2Rr = AI \cdot ID$

2. \triangle ABC の内接円と外接円を考える. 内心を I , 外心を O , 内接円の半径を r , 外接円の半径を R , 内心 I と外心 O の距離を d とする. 直線 AI と外接円の交点のうち, A ではない方を D とする. また直線 OI と外接円との交点を下図のように P,Q とす る. 前ページで証明したことは, 証明なしに使ってよい. (S 級 2 分 30 秒, A 級 5 分, B 級 7 分 30 秒, C 級 10 分)



- (1) $2Rr = R^2 d^2$ を証明せよ.
- (2) $R \ge 2r$ を証明せよ.



(1) 方べきの定理より、 $AI \cdot ID = IP \cdot IQ$ これを 1(3) の等式に代入して、

$$2Rr = AI \cdot ID$$

$$= IP \cdot IQ$$

$$= (OP - OI) \cdot (OP + OI)$$

$$= (R - d) \cdot (R + d)$$

$$= R^2 - d^2$$

(2)

2(1) の等式を変形して、

$$2Rr = R^2 - d^2$$

$$\Leftrightarrow R^2 - 2Rr = d^2$$

 $d^2 \ge 0$ かつ R > 0 であるから,

$$R^{2} - 2Rr \ge 0$$

$$\Leftrightarrow R(R - 2r) \ge 0$$

$$\Leftrightarrow R - 2r \ge 0$$

$$\Leftrightarrow R \ge 2r$$

等号条件は、d=0 のとき. つまり、内心と外心が一致するときになるので、 $\triangle ABC$ が正三角形のときである.

★ オイラーの定理 ($Euler's\ theorem$) 「 $R(R-2r)=d^2$ 」

レオンハルト・オイラーは, 1765 年にこの関係について述べているが、 $William\ Chapple$ は同じ関係式を 1745 年に発表している。このため、この定理は、Chapple の定理、Chapple-オイラーの定理などとも呼ばれる。

★ オイラーの不等式 (Euler's inequality) 「 $R \ge 2r$ 」

- ・ 三角比を用いた証明もある. こちらを参照.
- ・ 他の証明 外接円・内接円の公式から 相加相乗平均の関係 を用いて証明する.
- 三角形の3辺a,b,cに対して、 $s=\frac{a+b+c}{2}$ とする。 $R=\frac{abc}{4S}$ 、 $r=\frac{S}{S}$ から、

$$R-2r=\frac{abcs-8S^2}{4Ss}$$

ヘロンの公式と相加相乗平均の関係から,

$$8S^{2} = 8s(s-a)(s-b)(s-c) = s \cdot 2\sqrt{(s-a)(s-b)} \cdot 2\sqrt{(s-b)(s-c)} \cdot 2\sqrt{(s-c)(s-a)}$$

$$\leq s\{(s-a) + (s-b) + (s-b) + (s-c) + (s-c) + (s-a)\} = abcs$$

よって, $R-2r \ge 0$ は示される.